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Oblique instability of periodic waves in shallow water 

By P. J. BRYANT 
Mathematics Department, University of Canterbury, Christchurch, New Zealand 

(Received 7 April 1977 and in revised form 14 September 1977) 

Periodic permanent waves in shallow water are stable to periodic disturbances in the 
same direction, but are unstable to  certain oblique periodic disturbances. A computer- 
assisted stability analysis is made of such waves for oblique disturbances with wave- 
lengths comparable to and long compared with the fundamental wavelength. Regions 
of instability are calculated, and an explanation is given €or the occurrence of 
instability. It is shown that disturbances in the same direction with a small margin of 
stability may cause a greater modification to the permanent wave in practice than do 
oblique unstable disturbances. 

1. Introduction 
Stokes waves of fundamental wavelength 2nl on water of uniform depth h are stable 

to long disturbances in the same direction provided that h/E < 1-36 (Whitham 1974, 
Q 16.11), but are unstable to certain oblique long disturbances for almost all values of 
h/l  (Benney & Roskes 1969; Hayes 1973; Davey & Stewartson 1974). Long Stokes 
waves (h/Z < 1) have only an infinitesimal amplitude a, since a/h  < (h/Z)2 is a necessary 
condition for the existence of such waves (Whitham 1974, Q 13.13). In an earlier paper 
(Bryant 1974, referred to as I), the range of long permanent waves of small but finite 
amplitude was calculated, and their stability to comparable and long disturbances in 
the same direction was investigated. It was shown that the waves are stable to such 
disturbances, but that the margin of stability decreases towards zero as the length of 
the fundamental wave or the length of the disturbance becomes large compared with 
the depth. 

The method of calculation in I was a classical linear stability analysis, but because 
of the complexity of the coefficients and the large number of variables, a computer was 
used to assist the calculations. The same method is extended here to include oblique 
disturbances applied to the above range of permanent waves. The three investigations 
cited above were concerned only with long disturbances applied to Stokes waves, the 
disturbances being long in the sense of having wavenumbers small compared with the 
fundamental wavenumber of the Stokes wave. The present method of calculation 
extends their analysis to disturbances of wavenumber small compared with or 
comparable to the fundamental wavenumber, and to long permanent waves with 
finite but small amplitudes greater than those permissible for Stokes waves. 

Phillips (1974) explained the mechanism for instability of Stokes waves in terms of 
resonant interactions between the disturbance and the first two harmonics of the 
Stokes wave. If the first two harmonics have wavenumbers k and 2k, the first approxi- 
mnt,ions to their frequencies are w(k) and 2w(k), where w(k) is the frequency given by 
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the linear dispersion relation. For a disturbance of wavenumber K, the condition for 

(1.1) 
resonance is 

A mismatch with this linear resonance condition occurs because of the dependence of 
all three frequencies on amplitude as a result of quadratic interactions. Instability 
occurs, therefore, in the neighbourhood of the curve in wavenumber space described 
by ( 1 . 1 )  (Phillips 1974, figure VII.13). 

w(k-K)+w(k+K) = 24k) .  

2. Linear stability analysis 
Periodic waves of fundamental wavelenga 27rZ are generated in water of mean 

depth h bounded above by a free surface and beIow by a smooth horizontal bed. The 
two principal non-dimensional ratios are e = a/h  and ,u = h/Z, where a is a measure of 
wave amplitude. The horizontal non-dimensional co-ordinates x1 and x, in the mean 
free surface are measured in units of I ,  and time t is measured in units of Z/co, where 
co = (gh)* is the linear long-wave velocity. The governing equations are of the same 
form as those in I [equations (2. l)], extended to include one more horizontal co-ordinate. 
The periodic surface displacement is expanded in the Fourier series 

(2.1) 

where k = (k,, k,) is in units of 1/Z, x = (x,, x,), c is to be identifiedwith the velocity of 
permanent waves in units of co and the asterisk denotes the complex conjugate. On 
substitution into the governing equations, the Fourier amplitudes are found to satisfy 
(with D = d/dt)  

r](x, t )  = X A(k, t )  exp {ik. (x - ct)} + *, 

DA(k) - i(k. c - w(k)) A(k) = - &ie Z R(k, - 1) A(1) A(k - 1) 
-is X R(k, 1) A"(1) A(k + 1) + 0 ( e 2 ) ,  (2.2) 

where [o( k + 1) - ~ ( l ) ]  [k . 1  W (  k + 1) - k . (k + 1) ~ ( l ) ]  + w2( k) 1 .  (k + 1) 
2 4 )  o(k + 1) [w(k) + w(k + 1) - ~ ( l ) ]  

R(k,l) = 

9 (2.3) 
w2(k) [ ~ ~ ( l ) - w ( l ) w ( k + l ) + ~ ~ ( k + l ) ]  

w(k) = {(k/p)tanhk,u}*, k = (kq+k%)*, and o( -1) is to be interpreted as - w ( l )  in 
calculating R(k, - 1). 

-11, 2[u(k)+@(k+1)-41)]  

The Fourier series for the permanent wave is 

(2.4) 
l *  

r](x, t )  = - C ak exp { ik(z ,  - ct)} + *, 
2k=1 

where c and the amplitudes ak are calculated for the given 8 and ,u as in I (8  3). When 
the permanent wave is perturbed by a periodic disturbance of wavenumber K = (q, K,), 

the perturbed surface displacement is written as 
0" 1 m  ~ ( x ,  t )  = - c A^(ki, - K, t )  exp {i(ki, - K) . (x - ci,t)} 

ak exp {ik(x, - ct)] 

2 k = l  

l"0 + - 
2 k = 1  
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where i, is a unit vector in the x1 direction. This representation has been chosen so 
that the coefficients in (2.6) are constants. Although it is the dependent variable 
A^(kil t- K, t )  exp { - i [ ( k  k K ~ )  c - w(kil f K)] t }  which varies on the slow time scale et, A^ 
itself is written as being dependent on et in the examples following. This simplification 
is possible because c = 1 +O(e), w ( k )  = k(1 + O ( / C ~ ) ~ )  and hence the exponent is O(e) 
whenever p2 is O(e) and k is not too large. Substitution of the perturbed harmonics in 
(2 .2) ,  followed by linearization in A^, yields 

DA(k i1 -  K, t )  - i [ (k  - K1) C - U(ki1- K)] A^(ki1 - K, t )  
k - 1  

2-1 
m 

l a 1  

= -is x R(ki,-K, -Zi l )a lA({k- i } i l -K)  

-is x R(kil - K, li,) alA^({k + 11 i, - K) 
m 

z-0 
-is I: R ( k i l - K , l i , + K ) a , , , A ^ * ( l i , + K ) + 0 ( E 2 ) ,  k = 1, 2 ,  ..., (2.6a) 

D&i1 +K,t) - i [ ( k + K 1 ) c  -w(kil +K)] Al(ki, +K, t )  

- ie x R(kil + K, l i , )  aJ({k + Z}il + K) 

m 

= - iE x R(kil + K, - lil) a,A({k- l }  il + K) 
z = l  
m 

z = l  
m 

1=1 
-is x R(ki ,+K,l i1-K)ak+,A*(Ml-K)+O(S2),  k = 0 ,1 ,2 ,  ... . (2.6b) 

Equations (2.6a*, b )  are a set of first-order linear differential equations for theperturba- 
tion harmonics A^(K), A^*& - K), A(il + K), . . ., A^*(kil - K ) ,  A^(kil + K), . . . . 

The 2n + 1 equations for the first 2n + 1 perturbation harmonics may be solved by 
the normal-mode method (I, 5 4) by seeking solutions with time dependence exp (ihet). 
The number of equations was chosen to be sufficiently large that solutions are repro- 
duced within the desired accuracy (usually 10-4) when n is increased. Instability 
occurs when a pair of eigenvalues h is complex. 

3. Examples 
The regions of instability are now calculated for two permanent waves of the same 

amplitude (e = 0.06) but of differing wavelengths (p = 0.6, 0.25). The first three 
harmonics of the permanent wave for which e = 0.05 and p = 0.5 are 0.98, 0.17 and 
0.02. This value ofp is sufficiently large that the harmonics approximate the theoretical 
values for a Stokes wave (Whitham 1974, $13.13). The first five harmonics of the 
permanent wave for which s = 0.05 and p = 0.25 are 0.84, 0.39, 0-14, 0.05 and 0.02. 
These harmonics differ from those for a Stokes wave since the condition e + p2 is no 
longer valid here. 

The region of instability for the first permanent wave is sketched in figure 1.  The 
outer fine curve is the outer bound of instability and the inner fine curve is the contour 
on which hi = 2 x 10-8 for the unstable mode whose time dependence is 

exp { i ( A ,  - ih,) et}.  
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FIGURE 2. The region of htabi l i ty  for the permanent wave with E = 0.05 
and ,u = 0.25. The bold curve is the curve of linear resonance. 

The bold curve is the curve of linear resonance [equation (1 .  l)] for the given value 
of p. The points on the fine curves were calculated by the method outlined in Q 2, 
further harmonics being added to greater precision until no further change occurred 
in the calculated values of hi. It was found that, at the smallest values of K, eight har- 
monics calculated to a precision of 10-6t were required to obtain values of hi that did 
not change when the precision was increased further. The analytical calculations cited 
in 5 1 are valid only for the smallest values of K, where they show that instability 
occurs in the neighbourhood of the bold curve in figure 1. A closer comparison is 
not possible because the analytical calculations assumed a Stakes wave with two ha,r- 
monics, while the numerical calculations had to be continued to eight harmonics to 
obtain numerical convergence a t  small K. The present calculations show that the 
region of instability extends to values of K of about 0.5, i.e. to disturbances of twice the 
wavelength of the Stokes wave. The maximum rate of unstable growth is found to be 
hi = 2.65 x near K = 0.3. Figure 1 is consistent with the instability mechanism 

t This refers to the absolute error in the Newton-Raphson calculation of the permanent wave 
harmonics. 



Oblique instability of periodic waves in shallow water 787 

described by Phillips (1974), the amplitude resonance causing a mismatch with the 
linear resonance condition. 

The region of instability for the second permanent wave is sketched in figure 2. The 
fine curve is the outer bound of instability and the bold curve is the curve of linear 
resonance [equation (1.  l)] for the given value of y. The amplification rates are smaller 
than in the first example, the maximum amplification rate being Ai = 1.2 x 10-8, near 
K = 0.35. The previous analytical calculations predicting instability in the neighbour- 
hood of the bold curve are not applicable here because, for the given wavelength, the 
permanent wave has too large an amplitude to be a Stokes wave. 

Calculations were made also of part of the region of instability for a third permanent 
wave with e = 0.05 and y = 0.1. This wave contains 11 harmonics exceeding 0.01. The 
region of instability was found to be further from the linear resonance curve, to be 
narrower and to have smaller rates of unstable amplification than in the previous 
examples. The smaller rates of amplification required the calculations to be extended 
to over 30 harmonics calculated to a precision of in order to obtain numerical 
convergence. 

4. Stability and instability 
Now the time evolution of periodic disturbances of wavenumber 0.25 and amplitude 

&applied to the first two permanent waves of $3  is calculated. The methodof calculation 
is described in I ($ 4). The solutions are compared for the parallel stable case, when the 
margin of stability may be vanishingly small, and for the oblique unstable case, with 
the angle chosen as that at which the rate of amplification of the disturbance is 
greatest. The solutions are interpreted in the appendix. 

The first permanent wave of $ 3  is a Stokes wave, with 8 = 0.05 and p = 0.5. When 
it is perturbed by the disturbance of wavenumber 0.25, i.e. of wavelength four times 
the fundamental wavelength, the perturbation harmonics about the fundamental 
grow according to 

A(0.75, t )  = $[ - 1.38exp (0.155iet) + 1.28exp ( - 0487iet)  
+ 0.10 exp ( - 0.589ist) + . . .I, 

A(1.25,t) = &[1*47exp( -0.155i~t)-0~63exp(O.l87ist) 
- 0.84 exp (0.589id) + .,.I. 

(4.1 a) 

(4.1 b) 
[The magnitudes of the terms omitted in these and subsequent equations may be 
inferred by putting t = 0 and comparing each A  ̂ with its initial value of zero. More 
detail is given in the appendix.] 

When the Stokes wave is perturbed by the same disturbance at  an angle 0.136n, the 
perturbation harmonics about the fundamental grow according to 

A(1- 0.25 cos 0*136n, - 0.25 0 * 1 3 6 ~ ,  t )  

= 6[(0-23 + 0.17;) exp ((0.003 - 0.402i) st} 

+ (0.23 - 0.17i) exp (( - 0-003 - 0.402;) d} - 0.47 exp (0.637ist) + . . .], ( 4 . 2 ~ )  

A ^ ( 1 + 0 * 2 5 ~ 0 ~ 0 . 1 3 6 ~ ,  0.25sh 0.136n,t) 
= a[( - 0.38 - 0.21i) exp ((0.003 + 0.402;) ~ t }  

+ ( - 0.38 + 0.214 exp {( - 0.003 + 0-402i) a') + 0.75 exp ( - 0.637ist) + ...I. 
(4.2b) 
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These are the two perturbation harmonics which benefit directly from the linenr 
resonance (1.1). 

The amplitudes of the exponentially increasing oscillations in (4.2) are less than the 
amplitudes of the lowest normal modes in (4.1) for exp (0.003st) < 4 approximately, 
i.e. for st -= 500 approximately. This time span exceeds that of most practical applica- 
tions. The model is also of doubtful validity at the end of this time span because of the 
neglect of the O(@) tertiary interactions in the derivation of (2.2). The conclusion is 
that the effect of the stable disturbances in the same direction as the Stokes wave is 
of greater practical importance than the effect of the unstable disturbances oblique 
to the Stokes wave. 

When the same calculations are performed on the second permanent wave of 9 3, 
with E = 0.05 and ,u = 0.25, the dominance of the parallel disturbances becomes more 
pronounced. The equivalent perturbation harmonics are now 

J(0.75, t )  = a[ - 12.65exp (0.0133st) + 12.38exp ( -  0*0143et) 

+ 0.29 exp ( - 0.346ist) + . . .], 

- 1.04exp (0-346ist) + ...I. 

(4.3a) 

(4.3b) 

A(1~25,t) = $[16.02exp( - O.0133st) - 14.98exp (0.014ist) 

If the same disturbance is applied obliquely, the instability is a maximum at an angle 
0-0866n, with perturbation har1:ionics 

A( 1 - 0-25 cos 0.086671, - 0.25 sin 0.086671, t )  

= ar(0.42 + 0.323) exp ((0-001 - 0.2293) st} 

+(0~42-0~32i)exp{(0~001-0~229.3)~t}-0~81 exp(0*294ist)+ ...I, ( 4 . 4 ~ )  

A( 1 + 0.25 cos 0.086671, 0.25 sin 0*0866n, t )  

= a[( - 0.72 + 0.0li) exp ((0.001 + 0.2293) st} 

+ ( - 0.72 - 0.013) exp (( - 0.001 + 0.2293) et} + 1.45 exp ( - 0.2943~;) + ...I. 
(4.4b) 

Over the initial time span st < 500 of the previous example, the amplitudes (4.4) of 
the unstable oscillations in this example are less than 10 yo of the amplitudes of the 
lowest normal modes of the stable oscillations in (4.3). A small parallel stable distur- 
bance therefore gains energy from the permanent wave much faster than an oblique 
unstable disturbance over the time of validity or time of application of the present 
model. Hence a stable parallel disturbance can cause a much greater modification to 
a long permanent wave, in practice, than can an unstable oblique disturbance. 

When further examples were calculated, it was found that the dominance of the 
parallel disturbances over the oblique disturbances increases as the wavelength of the 
permanent wave increases. For any given permanent wave, the dominance is approxi- 
mately equivalent for different values of the disturbance wavenumber, provided that 
the angle of maximum oblique instability is chosen in each example. The reason for the 
dominance appears to be that the parallel disturbances interact near resonance with all 
the lower harmonics of the permanent wave, while the oblique disturbances interact 
resonantly with only the first two harmonics of the permanent wave. 
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5. Explanation of the instability 
Phillips’ explanation of the instability of Stokes waves to oblique disturbances is 

based on the occurrence of resonant triads among disturbance harmonics and the 
second harmonic of the permanent wave [equation (1 .  i)]. This instability persists for 
long permanent waves of greater amplitude than Stokes waves, so an attempt is now 
made to generalize Phillips’ explanation. 

An alternative description of (1.1) is that i t  determines the angle at  which the 
disturbance of wavenumber K must be offset from the permanent wave of wavenumber 
k in order that the disturbance harmonics of wavenumbers k - K and k + K interact to 
generate a harmonic proportional to exp i(2k. x - [w(k - K )  + o(k + K)] t}  which remains 
exactly in step with the second harmonic of the permanent wave proportionallto 
exp i(2(k. x - w(k) t ) } .  A resonant transfer of energy then occurs, causing expone tial 
growth of the amplitudes of the disturbance harmonics until further growth is restricted 
by the bound on the total energy. 

This explanation must be rephrased when it is applied to the second and third 
examples of permanent waves in 5 3, because the frequency of the second harmonic of 
these permanent waves now differs significantly from the linear frequency 2w(k), and 
the horizontal velocity field caused by the permanent waves at  the free surface con- 
tributes significantly to the frequencies of the disturbance harmonics. For the third 
permanent wave, for which E = 0.05 and p = 0.1, the frequency 2i1.c of the second 
harmonic is 2.063 compared with the linear frequency 2 4 4 )  of 1.997. The horizontal 
velocity field ranges from a maximum of 0.084 at  the crests of the permanent wave to 
a minimum of - 0.012 on the horizontal intervals separating consecutive crests. 

The explanation now is that K can be offset from k at an angle such that the distur- 
banceharmonicproportionaltoexpi(2k.x- [ o ( k - K )  +w(k +K)] t},withtheassistance 
of the horizontal velocity field at  the free surface, remains exactly in step with the 
second harmonic of the permanent wave proportional to exp i(2k. (x - ct)] .  The 
horizontal velocity field assists the positioning of the disturbance harmonic as follows. 
The region in front of a crest of the permanent wave is a region of velocity conver- 
gence, therefore shortening the horizontal length scale of any disturbance on the 
surface. If the disturbance is nearly stationary relative to the crest, then from the 
dispersion relation the shortening slows it and moves it back behind the crest. 
On the other hand, the region behind a crest of the permanent wave is a region of 
velocity divergence, therefore increasing the horizontal length scale of any disturb- 
ance on the surface. A disturbance nearly stationary relative to the crest increases 
its speed, from the dispersion relation, and moves to the front of the crest. The fine 
tuning which is possible by choice of the angle between K and k enables the above 
disturbance harmonic, assisted by the horizontal velocity field, to remain nearly 
stationary relative to the permanent wave and to grow resonantly from it. 

8’ 

The author wishes to thank the referees for their comments, which have led to 
improvements in the presentation. 
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Appendix 
The perturbation solutions (4.1)-(4.4) are interpreted here in terms of sum and 

difference interactions between the perturbation harmonics and the permanent wave 
harmonics. This interpretat'ion should have been applied to the examples discussed in 

Equations (4.1) refer to a disturbance of wavenumber K = 0.25 applied in the same 
direction as the permanent wave. For this example, (2.5) (or equation (4.2) of I) is 
rewritten in scalar form as 

1 (9  6). 

1 m  + - c ak exp { ik (x  - c t ) }  
2 k = ,  

Equations (4.1) then become 

8 ( K ,  t )  = a[i.20exp ( - 0-002ist) exp { - ~ w ( K )  t }  

- 0.37 exp (0.027iat) exp { - i[c - w(  1 - K ) ]  t }  

+ 0.1 7 exp ( - 0.034ist) exp { - i [w(  1 + K )  - c] t} + . . . (7 x 10-91 

(the bracketed number a t  the end of this and subsequent equations is the magnitude 
of the next term), 

8( 1 - K ,  f )  = a^[ - 1.38 exp (0.002iet) exp { - i[c - w ( K ) ]  t }  

+ 1.28 exp ( - 0.027ist) exp { - iw( 1 - K )  t> 
+O.lOexp(O.O34ist)exp{ -i[Sc-w(l + ~ ) ] t } +  ...( 4 x 

8( 1 + K ,  t )  = a[ 1-47 exp ( - 0.002isf) exp { - i [ c  + o ( K ) ]  t }  
- 0.63 exp (0-027ist) exp { - i[2c - w( 1 - K ) ]  t }  
- 0.84 exp ( - 0.034ist) exp { - iw( 1 + K )  t }  + . . . (5  x 

8 ( 2  - K ,  t)  = a^[ - 0.62 exp (0-002ist) exp { - i[2c - w ( K ) ]  t} 
+ 0.56 exp ( - 0.027iet) exp { - i[c + w( 1 - K ) ]  t }  
+ 0.04 exp (0-034iat) exp { - i[3c - w(  1 + K ) ]  t }  

+ 0.02 exp ( - 0.022ist) exp { - iw(  2 - K )  t }  + . . . (9 x 1 O-S)] ,  

B(2 + K ,  t )  = 52[0.41 exp ( - 0.002ist) exp { -i[2c + W ( K ) I  t }  
-0.18exp(0.027ist)exp{-i[3c-w(1 - I C ) ] ~ }  

- 0.24 exp ( - 0.034ist) exp { - i[c + w( 1 + K ) ]  t} 

+ 0.003 exp ( - 0.035ist) exp { - iw( 2 + K )  t} + . . . (5 x 

This solution may be interpreted as consisting of modes which approximate either 
the perturbation harmonics of wavenumber K ,  1 - K or 1 + K or modes which result from 
sum and difference interactions of these harmonics with the lower harmonics of the 
permanent wave. It is in a form which may be compared directly with the form 
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assumed by Benjamin (1967, pp. 66-68) in his analysis of the stability of Stokes waves. 
The comparison is not good, because Benjamin used an ordering in which 8( 1 5 K) are 
O(1) while &(K) and B ( ~ + K )  are U(e) .  Benjamin's initial condition is equivalent to 
8( 1 K) = 1, 8 ( k  & K) = 0 otherwise, but using this initial condition, 8 ( ~ )  and 8( 1 & K) 

were again found to be of the same magnitude at  subsequent times. However, Benjamin 
also took K to be O(E), and when the calculations were repeated with K = E = 0.05, the 
ordering did approximate that used by Benjamin. 

Equations (4.2) refer to a disturbance of wavenumber K of magnitude 0.25 applied 
at an angle 0 .136~ to the direction of propagation of the permanent wave. For this 
example, (2.5) is rewritten as 

~ ( x ,  t) = - 
1 -  

8 ( k i l  - K, t )  exp {i(ki, - K) . x} 
k=l 

1 "  + - z ak exp {ik(xl - c t ) }  
2 k = 1  

1 "  +- z ~(ki,+K,t)exp{i(Li,+K).x}+*. 
k=O 

Equations (4.2) may then be expanded and rewritten as 

&K, t )  = &{0.95 exp ( - 0.050iet) exp { - ~w(K) t }  

+ r0.05 cosh (0.003et) + Od3i sinh (0.003st)l 
x [p exp (0.129ist) exp { - i[c - o(il - K)] t} 
+qexp( -O-O9Oiet)exp{ - i [w( i ,+~)-c] t}]+  ...( 5 x 

(the division of the unstable mode between the modes generated by the wavenumbers 
i, k K may be assigned arbitrarily, and is expressed here and in subsequent equations 
by the ratio p :  q, where p + q = l),  

B(il - K, t )  = &{ - 0-47 exp (0-050ist) exp { - i [ c  - w(K)] t }  

x [p exp ( - 0.1 29iet) exp { - iw(il  - K) t }  

8(il + K, t )  = &{O-75 exp ( - 0-050iet) exp { - i[c + w(rc)] t }  

+ [0.47 cosh (0~003et) + 0.35isinh (0.003et)j 

+qexp(O.O9Oiet)exp{ - i [2c-w(i l+~)] t}]  + ...( 2 x 

- [0-75 cosh (0.003et) + 0.42isinh (0.003et)l 
x [pexp(0.129iet)exp{-i[2c-w(il-~)]t} 
+ q exp ( - 0.OgOitt) exp { - iw(i ,  + K) t}] + . . . (6 x 

&2i, - K, t )  = &{ - 0.21 exp (0.050id) exp { - i[2c - w(K)] t }  

+ [0.19 cosh (0.003et) + 0914isinh (0.003et)l 
x [p exp ( - 0.129iet) exp { - i [ c  + w(i, - K)] t} 
+qexp (0-090iet)exp{ -i[3c-w(il + ~ ) t } ]  
+ 0.02 exp ( - 0.028iet) exp - iw( 24 - K) t + . . . (8 x 1 O-"}, 

- l0.21 cosh (0.003et) + 0-12i sinh (0.003et)l 
x [pexp (0.129iet)exp(-i[3c-w(i1-~)]t} 
+ qexp ( - 0.090id) exp { - i[c + w(il  + K)] t } ]  

+ 0.003 exp ( - 0.036iet) exp { - iw(2i1 + K) t }  + . . . (5  x 

B(2i1 + K, t )  = a(0.21 exp ( - 0.050iet) exp { - i[2c + w(tc)] t }  



7 92 P. J .  Bryant 
The structure of the solution in this oblique case is similar to that for the parallel case 

except for the unstable mode. The unstable mode is associated with themodes generated 
by the wavenumbers i, f K ,  as expected for the reasons advanced in Q 1.  
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